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Abstract

For distributed remote sensing architectures to be useful for collecting data,

it is essential to have a methodology for relating orbital formation parameters to

remote sensing requirements. Utilizing the characteristics of formation parameters,

an orbital design approach is developed that establishes a satellite formation from

a desired instantaneous spatial distribution as viewed from a target ground site.

To maintain a conceptually basic representation, a geometric approach is used to

develop the correlating algorithm. This tool will enable mission planning for orbital

formations as well as future concept exploration.
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GEOMETRIC APPROACH TO ORBITAL FORMATION

MISSION DESIGN

I. Introduction

1.1 Problem Statement

A common problem among the space radar community and the space dynamics

community is the difficulty in transferring requirements when dealing with satellite

arrays. To solve this problem, this thesis examines how to correlate remote sensing

requirements with orbital parameters. To insure that these algorithms are opera-

tionally practical, analytical solutions, when possible, are developed.

1.2 Literature Review

In the past, looking into the heavens and staring back at Earth was done

through the use of expensive and cumbersome satellites. These satellites have been

superseded by smaller, more efficient satellites. With this trend, the next evolution-

ary step has been born: formation flying [20]. Formation flying uses an array of

close orbiting small satellites. As Yeh [32] mentions, the term “flying” is somewhat

deceiving because it infers the agility of aircraft mobility. Hence, the term orbital

formations is used throughout this paper. There are many advantages and uses for

orbital formations.

The advantages of orbital formations include a greater flexibility in payload

distribution, which increases the launch options thereby reducing the project cost.

With the multi-satellite design, it is easier to incorporate redundancy to allow for the

system to continue if one satellite fails. In addition, the multiple satellite arrange-

ment makes replacement and upgrading easier. Another advantage directly related to
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this thesis is improved and adjustable angular resolution for multi-aperture imaging,

where angular resolution is a direct function of the formation geometry.

The potential use for orbital formations widely varies. Several published works

have listed possible applications for the orbital formations technology. Johnston [12]

and Cornwell [4] name astronomy as a possible use of orbital formations. Others

explain how orbital formations could be used for communication, moving target

identification [23], and interferometry [4] [6] [13]. Whatever the use, it is important

to realize that any performance metric to be achieved by the sensing architecture is

a direct function of the formation geometry.

For mission design it is highly advantageous to have an analytical method to

calculate the formation geometry. This is somewhat difficult due to the nonlinear,

high order, and coupled mathematics [31] [32] that characterize orbital formation

dynamics. The approach taken by most authors, including this one, is to use Clohessy

and Wiltshire’s [3] linearized solutions of Hill’s equations [10]. This method does not

incorporate any perturbations due to oblateness, therefore it becomes inaccurate for

extensive time analysis. However, it is useful for determining the dynamics over

shorter periods of time. In fact, Guelman and Aleshin [17] use this method to

accurately minimize fuel for rendezvous maneuvers. In addition, Lovell and Tragesser

[14] are able to use these solutions to represent reconfiguration maneuvers.

In view of the limitations, several individuals have used their resources to im-

prove upon the Clohessy and Wiltshire model. First order oblateness affects are

added to Clohessy and Wiltshire solutions by Schaub and Alfriend [21] who de-

scribe the relative orbit using Delaunay [7] orbital elements. Further perturbation

effects are added to Clohessy and Wiltshire’s solutions by Sedwick, Miller, and Kong

[24] who use Buckingham’s [2] dimensional equation techniques. The Draper Semi-

analytic Satellite Theory (DSST) is used by Sabol, Burns, and McLaughlin [20] to

extend the results to include a 21st order gravitational field, lunar and solar third

body, atmospheric drag, and solar wind perturbations.
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One of the front runners who has taken a drastically different approach to

improving the accuracy of dynamic modeling for orbital formations is Wiesel. His

method includes tying the typical Gaussian reference used in formation analysis

to a Hamiltonian inertial frame, and then, by using the techniques of Floquet [18],

analyzing the dynamics of orbital formations. This method increases the accuracy by

three or more orders of magnitude beyond what one could expect from Clohessy and

Wiltshire’s results [31]. This accuracy in calculations is shown through the results

arrived at by Bordner [1]. Wiesel expands his work by including second order two-

body terms and zonal perturbations into his Floquet analysis [30]. This is expanded

by Wiesel’s examination of the operational practicality for long term station-keeping

[29].

In addition to Wiesel, several others have researched control theory for orbital

formations. Yeh, Nelson, and Sparks [32] developed a methodology using a sliding

mode framework. Irvin [11] investigated minimal fuel reconfiguration techniques

using the Clohessy and Wiltshire solution and a variety of feedback techniques.

The recent interest in orbital formations has increased due to the TechSat 21

program. The TechSat 21 program was an Air Force and NASA feasibility research

initiative for satellite formations. This incentive boosted the research in orbital

formations design. Great progress was made in the areas of satellite formation dy-

namics, micro-satellite and micro-propulsion design, distributed mission architecture,

sparse aperture sensing, collaborative behavior, and micro-nano-technology [5] [19]

[25].

In the last five years a considerable amount of research has been performed on

orbital formations. Sabol, Burns, and McLaughlin investigated satellite formation

design. Lovell and Tragesser [14] [15] [16] pursued formation reconfiguration and

maintenance, whereas Schweighart and Sedwick [22] worked toward a better under-

standing of relative orbital perturbations. Many others such as Wiesel [29] labored
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in this area to improve upon what Clohessy and Wiltshire started in 1960 with their

expansion of Hill’s 1878 Lunar Theory.

1.3 Research Objective

The objective is to correlate remote sensing requirements to the orbital param-

eters of stationary satellite formations, and then demonstrate and validate through

Matlab r© algorithms.

1.4 Thesis Outline

This chapter states the problem explored and reviews previously published

literature that gives the reader the background necessary for this study. Chapter II

establishes the necessary coordinate system terminology and provides two relevant

derivations for insight into the problem and into the limitations of the solution.

Chapter III builds upon the characteristics of stationary formations to enhance the

design process. Chapter IV sets up the design by providing the necessary inputs, and

then correlating points in the imaging plane of a ground site to satellite positions

utilizing two distinctly different design constraints. Chapter V provides a summary of

the research, the results found, recommendations for future study, and conclusions

drawn. Overall, this paper builds upon the concept of the stationary constraint

by characterizing the physical relative periodic path. These features are used to

correlate basic geometric formation parameters with an instantaneous distribution

of satellites as viewed from the ground site imaging plane.
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II. Preliminary Development

2.1 Coordinate Systems

Although several authors use cylindrical [28] or spherical coordinates when

dealing with formations, in this paper, Cartesian coordinates are used exclusively.

All coordinate systems use a right hand rule. The nomenclature for the coordinate

systems uses a multi-letter designator where the first letter represents the first axis,

the second letter represents the second axis and so forth, until all axes are properly

represented. The nomenclature for the position vector of “obj” in the “XY Z” co-

ordinate system will be represented as ~rXY Z
obj , velocity as ~vXY Z

obj , and acceleration as

~aXY Z
obj .

For ease of programming and mathematical manipulation, the position vector

may be represented as a 4x1 matrix. Where the first position of the matrix indicates

the perpendicular projection of the position vector onto the first axis, the second and

third positions follow with the fourth position labelled as Ξ which is a place holder

equivalent to one.

One of the key elements in solving this problem is going from one coordinate

system to the next. This makes it imperative that we not only have a good definition

of coordinate systems but a reasonable way to change between coordinate systems.

To switch between coordinate systems, matrix algebra is used. The three types of

4x4 matrices that are used are rotation matrices, transition matrices, and projection

matrices.

There are three types of rotation matrices. Each of these rotation matrices

rotates the system clockwise as viewed from the negative axis. The One Rotation
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refers to a rotation of α degrees about the first axis,

ROT1(α) =




1 0 0 0

0 cos (α) sin (α) 0

0 − sin (α) cos (α) 0

0 0 0 1




(2.1)

and the Matlab r© code can be seen in Appendix(B). The Two Rotation refers to

a rotation about the second axis of α degrees,

ROT2 (α) =




cos (α) 0 − sin (α) 0

0 1 0 0

sin (α) 0 cos (α) 0

0 0 0 1




(2.2)

and the Matlab r© code can be seen in Appendix(C). The Three Rotation refers to

a rotation of α degrees about the third axis,

ROT3 (α) =




cos (α) sin (α) 0 0

− sin (α) cos (α) 0 0

0 0 1 0

0 0 0 1




(2.3)

and the Matlab r© code can be seen in Appendix(D).

There is one general translation matrix that will be used, and it has the fol-

lowing form.

TRAN(∆x, ∆y, ∆z) =




1 0 0 ∆x

0 1 0 ∆y

0 0 1 ∆z

0 0 0 1




(2.4)
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Where ∆x is a translation along the first axis, ∆y is a translation along the second

axis, and ∆z is a translation along the third axis.

Mapping from three dimensions onto two dimensions is called perspective pro-

jection. The matrix that performs the perspective projection is shown in section

2.1.6.

The transformation of velocity and acceleration vectors is slightly different due

to the motion of frames. The relationship between the inertial velocity and relative

velocity is

~vP = ~vO′ + ~vrel + ~ω × ~rP/O′ (2.5)

Where the subscript P represents the point of interest, O
′
represents the origin of the

rotating frame, and O represents the fixed reference frame. ~rP/O
′ describes point P

as seen from the moving reference frame and ~ω is the angular velocity of the rotation

frame. The relationship between the inertial acceleration and relative acceleration is

~aP = ~aO′ + ~arel + ~α× ~rP/O′ + ~ω × (~ω × ~rP/O′ ) + 2~ω × ~vrel (2.6)

where ~α is the angular acceleration of the rotation frame. The three general types

of acceleration can be seen in the equation above. The Coriolis acceleration is

~acor = 2~ω × ~vrel (2.7)

The centripetal acceleration is

~acen = ~ω × (~ω × ~rP/O
′ ) (2.8)

The tangential acceleration is

~atan = ~α× ~rP/O
′ (2.9)
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By assuming a circular orbit, the tangential acceleration is zero. Therefore, the

inertial acceleration may be related to the relative acceleration by

~aP = ~aO′ + ~arel + ~ω × (~ω × ~rP/O′ ) + 2~ω × ~vrel (2.10)

2.1.1 Satellite “RSW”. The RSW coordinate system is a rotating coordi-

nate system whose origin is a reference satellite. The reference satellite is referred to

as the chief. As the chief moves through its circular orbit, R̂ is in the direction of the

chief’s position vector, Ŝ is in the direction of the chief’s velocity, and Ŵ is normal

to the chief’s orbital plane. For the purpose of this paper, x, y, and z depict the

position of a secondary or deputy satellite’s R, S, and W components respectively.

Matlab r© code to perform coordinate transformation is found in Appendix(H).

2.1.2 Relative “BAC”. Another coordinate system whose value and orien-

tation will become clear later is the Relative Stationary Orbital coordinate system,

BAC, where the origin is located at the “pseudo-chief”, the center of the deputies

elliptical trajectory as explained in Section 3.2, and the B-axis is in the direction of

the semi-minor axis in the positive direction of Ŵ of the RSW frame. The A-axis

is in the direction of the semi-major axis, and Ĉ is normal to the relative formation

plane. Figure 2.1 illustrates the BAC coordinate system.

2.1.3 Earth Centered Inertial “IJK”. The Earth Centered Inertial coordi-

nate system, IJK, is the inertial frame for this paper. As suggested by the title, this

is a geocentric coordinate system, or in other words the origin is at the center of the

earth. The I-J plane passes through the earth’s equator. The I-axis points towards

the vernal equinox. The direction of the vernal equinox is designated γ̂ and is often

referred to as the first point of Aries but points in the direction of the constellation

Pisces. The J-axis is located 90˚ from Î in the direction of the earth’s rotation, and

the K-axis points toward the North Pole. A point on the earth, target site, may be
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Figure 2.1 “BAC” Coordinate System

located by the two angles La and ΘLST . The latitude, La, is an angle from the I-J

plane, whereas ΘLST is an angle from the I-axis in the direction of the rotation of

the earth. ΘLST is equal to the GMST, Greenwich Mean Sidereal Time, angle plus

lo, the longitude. Matlab r© code to perform coordinate transformation is found in

Appendixes (H) and (I).

2.1.4 Topocentric Horizontal “SEZ”. The SEZ system’s origin rotates with

the target site. The target site location is calculated using a spherical earth. The

S-axis points directly south from the site. The E-axis points east from the site. The

Z-axis points radially outward from the center of the earth. The direction of an object

viewed from SEZ will be located with a look vector where the look vector is defined

by an azimuth, az, and elevation angle, el. Azimuth is the angle measured from

the negative S-axis (North) clockwise as viewed from above the site to the location

beneath the location of interest and can be values from 0 to 360 degrees. Elevation

is measured from the local horizon position in the direction of positive zenith to the

object of interest. Elevation can take on values between 0 and 90 degrees. Matlab r©

code to perform coordinate transformation is found in Appendixes (I) and (J).
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2.1.5 Objectcentric Viewing “GLP”. It is beneficial to establish an in-

termediate coordinate system, GLP, to differentiate between points that exist in

three-dimensional space and those that are simply projections of points. The GLP

coordinate system’s origin is displaced from the origin of the SEZ frame in the

reference satellite’s positive look vector direction. To abbreviate the problem, the

distance the origin is displaced is assumed to be equivalent to the reference satel-

lite’s range. The assumption that the displacement of the origin is equivalent to the

range makes the GLP coordinate system an objectcentric imaging coordinate system

whose origin is the chief satellite. The range may simply be defined by the chief’s

radius, ac (characterized by the chief’s period), and elevation angle:

ρ =
√

a2
c − r2

e · cos(el)2 − re · sin(el) (2.11)

where re is the radius of the earth. Ĝ is parallel to the Ground (S-E plane). L̂ is

in the direction of the Look vector, and P̂ is defined in the Positive zenith direction

(see Figure 2.2). The translation and rotation matrix for GLP to SEZ, SEZRGLP , is

ROT3(az − π
2
) ·ROT1(−el) · TRAN(0, ρ, 0) (2.12)

Matlab r© code to perform this coordinate transformation is found in Appendix (K).

2.1.6 Observation “UV”. The axes of the imaging plane are Û and V̂ ,

where Û is in the G direction, and, atypical from convention, V̂ is in the positive

P direction. The objective is to correlate each satellite in an array to a specific

observation point on the u-v plane, so that the location of the ith satellite is specified

by (ui, vi). Mapping from three dimensions onto two dimensions is called perspective

projection. The projection matrix for GLP to UV, UV RGLP , is




ρ
D+ρ

0 0 0

0 ρ
D+ρ

0 0


 (2.13)
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Figure 2.2 “GLP” Coordinate System

where D represents the distance along the optical axis. The optical axis is L̂ of the

GLP coordinate system. Matlab r© code to perform coordinate transformation is

found in Appendix (K).

2.2 Preliminary Equations

A common set of relative motion equations used in orbital formation analysis

is Hill’s equations. Several texts, including Wiesel [28], have derivations of Hill’s

equations. To explicitly illustrate the various assumptions on which this paper is

based, Hill’s equations are developed from the force-free first-order linearization of

the point mass two body motion equation. This is followed by the solution of Hill’s

equations using the stationary constraint to form the force-free first-order stationary

(F3OS) formation equations.
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2.2.1 Hill’s Equations. The equation of motion for the reference satellite,

or chief, is defined using the point mass two-body motion equation.

~̈rc = −µ · ~rc

r3
c

(2.14)

Considering no additional forces on the deputy satellite, i.e., force-free, the equation

of motion for the deputy is given as

~̈rd = −µ · ~rd

r3
d

(2.15)

The relative position vector is defined as

~rr = ~rd − ~rc (2.16)

Using Eq.(2.16), the deputy position is

~rd = ~rc + ~rr (2.17)

Using the cosine law by definition of the dot product:

|~r1 − ~r2|2 = ~r1 • ~r1 − 2 · ~r1 • ~r2 + ~r2 • ~r2 (2.18)

the magnitude of the deputy’s position is

rd =
√

r2
c + 2 · ~rc • ~rr + r2

r (2.19)

Cubing Eq.(2.19) and using Eq.(2.17) yields

~rd

r3
d

=
~rc + ~rr

(r2
c + 2~rc • ~rr + r2

r)
3
2

(2.20)
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It is assumed that the square of the distance between the chief and deputy is small

compared to the magnitude of the chief’s position vector squared. Through this

assumption, Eq.(2.20) may be rearranged.

~rd

r3
d

=
~rc + ~rr

r3
c

(
1 +

2~rc • ~rr

r2
c

)−3/2

(2.21)

Use the binomial series:

(1 + x)n = 1 + nx +
n (n− 1) x2

2!
+ . . . (2.22)

to expand the second part of Eq.(2.21) where

x =
2~rc • ~rr

r2
c

n =
−3

2
(2.23)

yields
~rd

r3
d

=
~rc + ~rr

r3
c

{
1− 3

2

(
2~rc • ~rr

r2
c

)
+ . . .

}
(2.24)

Differentiating Eq.(2.16) twice yields

~̈rr = ~̈rd − ~̈rc (2.25)

Substituting Eq.(2.14) and Eq.(2.15) yields

~̈rr =
−µ~rd

r3
d

+
µ~rc

r3
c

(2.26)

Substituting Eq.(2.24) results in

~̈rr = −µ

(
~rc + ~rr

r3
c

·
{

1− 3

2

(
2~rc • ~rr

r2
c

)
+ . . .

})
+

µ~rc

r3
c

(2.27)
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Eliminating all second order or greater terms (hence the term first-order equation)

and simplifying yields

~̈rr = − µ

r3
c

(
−3~rc

2

(
2~rc • ~rr

r2
c

)
+ ~rr − 3~rr

2

(
2~rc • ~rr

r2
c

))
(2.28)

The assumption is made that ~rr/rc
2 is very small and therefore may be set to zero.

This provides the equation of the inertial acceleration of the deputy in the RSW

frame.

~̈rr = − µ

r3
c

(
−3~rc

2rc

(
2~rc • ~rr

rc

)
+ ~rr

)
(2.29)

The relative position in the RSW frame may be defined as

~rr = x · R̂ + y · Ŝ + z · Ŵ (2.30)

By definition of the RSW frame, ~rc is in the direction of R̂.

~rc = rc · R̂ (2.31)

Using Kepler’s third law, the mean motion of the circular orbit is

ω =

√
µ

r3
c

(2.32)

Therefore using Eqs.(2.30) and (2.32), Eq.(2.29) may be simplified to

~̈rr = −ω2
(
−3xR̂ +

(
x · R̂ + y · Ŝ + z · Ŵ

))
(2.33)

The mean motion vector of the reference satellite is about the W-axis, and therefore

may be represented as

~ω = ω · Ŵ (2.34)
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The Coriolis acceleration is found using Eqs.(2.7) and (2.34) in addition to the deriva-

tive of Eq.(2.30).

~acor = 2
(
−ωẏR̂ + ωẋŜ

)
(2.35)

Using Eqs.(2.8), (2.30), and (2.34), the centripetal acceleration is

~acen = −ω2xR̂− ω2yŜ (2.36)

Substituting Eqs.(2.33), (2.35), and (2.36) into Eq.(2.10) and solving for the relative

acceleration yields

~̈rrR
= −ω2

(
−3xR̂ +

(
x · R̂ + y · Ŝ + z · Ŵ

))
− 2

(
−ωẏR̂ + ωẋŜ

)

+ω2xR̂ + ω2yŜ (2.37)

Writing each vector component separately yields Hill’s force-free first-order equa-

tions:

ẍ = 3 · ω2 · x + 2 · ω · ẏ (2.38)

ÿ = −2 · ω · ẋ (2.39)

z̈ = −ω2 · z (2.40)

2.2.2 Hill’s Stationary Solution. Many methods are available to solve Hill’s

equations. One of the more common methods employs Laplace operators, as are used

here to follow Vallado’s derivation. Begin by taking the derivative of Eq.(2.38).

...
x = 3ω2ẋ + 2ωÿ (2.41)

Substituting Eq.(2.39) and simplifying yields

...
x +ω2ẋ = 0 (2.42)
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Therefore, the Laplace transform is

L [...
x + ω2ẋ

]
= {s3X(s)− s2x0 − sẋ0 − ẍ0}+ ω2{sX(s)− x0} = 0 (2.43)

The solution of the subsidiary equation is

X(s) =
x0

s
+

ẋ0

(s2 + ω2)
+

ẍ0

sω2
− sẍ0

ω2(s2 + ω2)
(2.44)

Taking it back into the time domain through the inverse Laplace yields

x(t) = x0 +
ẍ0

ω2
+

ẋ0

ω
sin(ωt)− ẍ0

ω2
cos(ωt) (2.45)

Substituting Eq.(2.38) into the equation above and simplifying leads to

x(t) = 4x0 +
2ẏ0

ω
+

ẋ0

ω
sin(ωt)−

(
3x0 +

2ẏ0

ω

)
cos(ωt) (2.46)

Differentiating with respect to time yields

ẋ(t) = ẋ0 cos(ωt) + (3ωx0 + 2ẏ0) sin(ωt) (2.47)

Substituting the above equation into Eq.(2.39) and simplifying gives

ÿ = −2ωẋ0 cos(ωt)− 2ω(3ωx0 + 2ẏ0) sin(ωt) (2.48)

Integrating yields

ẏ = −2ẋo sin(ωt) + 2(3ωxo + 2ẏo) cos(ωt) + C1 (2.49)

where C1 is a constant of integration. Integrating a second time yields

y =
2ẋ0

ω
cos(ωt) +

(
6x0 +

4ẏ0

ω

)
sin(ωt) + C1t + C2 (2.50)
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From the second constant of integration, C2, it may be seen that the position in the

y direction has a constant offset, later termed yd. The first constant of integration is

multiplied by time, thereby indicating that the y component of the relative position

of the deputy satellite will vary with time. This variation with time has been termed

“drift”. A stationary formation is one with no drift, i.e., C1 = 0. To solve for the

first constant of integration in terms of initial conditions, Eq.(2.49) is evaluated at

the initial time, t = 0.

ẏ0 = 6ωx0 + 4y0 + C1 (2.51)

The stationary constraint is found by setting C1 = 0 and simplifying.

ẏo = −2 · ω · xo (2.52)

By inducing the stationary constraint, the motion of the deputy is contained to a

periodic elliptical path, and the total number of undetermined states is reduced from

six to five. To solve for the second constant of integration, Eq.(2.50) is evaluated at

t = 0.

C2 = −2ẋ0

ω
+ y0 (2.53)

This leads to the y position equation for F3OS formations.

y(t) = 2 · ẋo

ω
· cos(ω · t)− 2 · xo · sin(ω · t) + yo − 2 · ẋo

ω
(2.54)

As Vallado [26] mentions, Eq.(2.38) and Eq.(2.39) are coupled, therefore the station-

ary constraint must also be applied to Eq.(2.46) yielding the x position equation for

F3OS formations.

x(t) =
ẋo

ω
· sin(ω · t) + xo · cos(ω · t) (2.55)

As stated in Wiesel [28], the solution to the z equation is a simple harmonic oscillator

given by

z̈ + ω2z = 0 (2.56)

2-13



and when transformed using Laplace, follows

s2Z(s)− sz0 − ż0 + ω2Z(s) = 0 (2.57)

Z(s)(s2 + ω2) = sz0 + ż0 (2.58)

Z(s) =
sz0

(s2 + ω2)
+

ż0

(s2 + ω2)
(2.59)

The derivation is completed by using the inverse Laplace to obtain the z position

equation for F3OS formations.

z(t) = z0 cos(ωt) +
ż0

ω
sin(ωt) (2.60)

Therefore Eqs.(2.54), (2.55), and (2.60) are termed the F3OS equations. These

equations are the solutions to Eqs.(2.38), (2.39), and (2.40), Hill’s force-free first-

order equations, when Eq.(2.52), the stationary constraint, is enforced.
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III. Stationary Formation Characteristics

3.1 Parameterization

Through simple examination of Eq.(2.54) and Eq.(2.55), it can be seen that

magnitude of oscillation in the velocity direction is twice that of the radial direction.

This magnitude gives the semi-major axis of the in-plane, R-S plane, ellipse which

was discussed by Sabol [20] and is defined here by

ae = 2 ·
√(

ẋo

ω

)2

+ x2
o (3.1)

The constant terms found in the y(t) equation of Eq.(2.54) are represented by yd

which has the physical significance of being the displacement of the center of the

formation in the velocity (Ŝ) direction.

yd = yo − 2 ·
(

ẋo

ω

)
(3.2)

By examining Eq.(2.60), the amplitude of oscillation in the z(t), or the out-of-plane

direction, is termed zmax and is defined as

zmax =

√(
żo

ω

)2

+ z2
o (3.3)

Figure 3.1 gives a physical representation of the parameterization variables ae, yd,

and zmax. Using Lovell’s [14] notation and convention, the variable β is a parametric

angle in the chief’s orbital plane measured from the negative R-axis in the direction

of motion to locate the deputy.

β = ω · t + βo (3.4)
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Figure 3.1 Physical Representation of ae, zmax and yd

where

βo = tan−1

( −ẋo

ω · xo

)
(3.5)

The phasing of z(t) is adjusted using the parameter φ. Varying from Lovell [14], this

parametric angle is given by

φ = βo − tan−1

(
żo

ω · zo

)
(3.6)

related to an in-plane physical angle measured from perigee to the point at which the

satellite ascends through the reference orbital plane. The solution to Hill’s equations

is re-parameterized utilizing Eqs.(3.1)-(3.6). The relative position is then described
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by

x = −ae

2
· cos(β) (3.7)

y = ae · sin(β) + yd (3.8)

z = zmax · sin(β − φ) (3.9)

Note that β-φ in Eq.(3.9) indicates the phase of the deputy’s motion in the Ŵ

direction.

3.2 Formation Plane

The result of manipulating Eq.(3.7) is

cos(β) =
−2 · x

ae

(3.10)

and rearranging Eq.(3.8) gives

sin(β) =
y − yd

ae

(3.11)

Substituting Eqs.(3.10) and (3.11) into the trigonometric identity sin(β)2+cos(β)2 =

1 results in
4 · x2

a2
e

+
(y − yd)

2

a2
e

= 1 (3.12)

which is an elliptical cylinder with an eccentricity of
√

3/2. The deputy satellite

must always lie on this cylinder. This agrees with Sabol’s [20] statement of a 2x1

in-plane projected ellipse having the semi-major axis in the velocity direction. Using

the angle difference relationship, Eq.(A.18), to expand Eq.(3.9), results in

z = zmax · (sin(β) · cos(φ)− cos(β) · sin(φ)) (3.13)
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Substituting Eqs.(3.10) and (3.11) into Eq.(3.13) results in

z = zmax ·
((

y − yd

ae

)
· cos(φ)−

(−2 · x
ae

)
· sin(φ)

)
(3.14)

and simplifies to

2 · sin(φ) ·
(

zmax

ae

)
· x + cos(φ) ·

(
zmax

ae

)
· y +−z = cos(φ) ·

(
zmax

ae

)
· yd (3.15)

When yd = 0, the normal of the relative trajectory is identified as

~nr =




2 · sin(φ)

cos(φ)

−ae

zmax


 (3.16)

Therefore, the formation plane is defined as




2 · sin(φ)

cos(φ)

−ae

zmax


 •




x

y

z


 = 0 (3.17)

The deputy’s trajectory is thus defined as the intersection of an elliptical cylinder and

a plane, where the former is defined by ae and yd and the latter by φ, ae, and zmax.

Furthermore, the intersection of an elliptical cylinder and a plane can be shown to

be an ellipse [8] [9]. To the author’s knowledge, this is the first time in literature that

the relative path of a stationary formation is proven to have an elliptical trajectory.

3.3 Relative Axis

With the plane defined, the major and minor axis of the relative ellipse are

now found. First, the distance from the center of the ellipse, pseudo-chief, to the

deputy is given by

d(t) =
√

x2 + y2 + z2 (3.18)
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Substituting the stationary equations, Eqs.(3.7)-(3.9), into Eq.(3.18) yields

d(t) =

√
a2

e

4
· cos(β)2 + a2

e · sin(β)2 + z2
max · sin(β − φ)2 (3.19)

Differentiating Eq.(3.19) with respect to β and then setting the numerator of the

derivative equal to zero gives an equation governing the location of the minimum

and maximum distance:

3 · a2
e · cos(β) · sin(β) + 4 · z2

max · cos(β − φ) · sin(β − φ) = 0 (3.20)

where β∗ is the value of β corresponding to the extrema of d(t). Expanding cos(β∗−φ)

and sin(β∗ − φ) and performing algebra yields

2 · cos(φ)2 +
cos(φ) · sin(φ)

cos(β∗) · sin(β∗)
− 2 · cos(β∗)

sin(β∗)
· cos(φ) · sin(φ)− 1 =

−3 · a2
e

4 · z2
max

(3.21)

This allows β∗ to be isolated on the left side of the equation and the right side to be

a function of ae, zmax, and φ.

2 · cos(β∗)2 − 1

cos(β∗) · sin(β∗)
=

(
3 · a2

e

4 · z2
max

+ 2 · cos(φ)2 + 1

)
· (cos(φ) · sin(φ))−1 (3.22)

Through additional algebra and trigonometric substitutions, this equation is put into

the polynomial form:

cos(β∗)4−cos(β∗)2 =
16 · (cos(φ)2 − cos(φ)4) ·

(
zmax

ae

)4

[
(128 · cos(φ)2 + 16) ·

(
zmax

ae

)4

+ (48 · cos(φ)2 + 24) ·
(

zmax

ae

)2

+ 9

]

(3.23)

Noting that zmax and ae appear as a ratio (confirmed in Section 3.5), the relative

quotient is defined as

qr =
zmax

ae

(3.24)
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Through use of the quadratic formula, a solution of cos(β∗)2 is attained and further

resolved to find four solutions of β∗ as a function of qr and φ.

β∗ = cos−1


±

√√√√1±
√

(16+192·cos(φ)2−64·cos(φ)4)·q4
r+(24+48·cos(φ)2)·q2

r+9
(16+128·cos(φ)2)·q4

r+(24+48·cos(φ)2)·q2
r+9

2


 (3.25)

Assuming that β∗ is a positive angle, the solution is reduced to two values. These

two values for β∗ can then be placed into Eq.(3.19) to find the magnitude of the

semi-major axis, ar, and semi-minor axis, br, respectively or into Eqs.(3.7)-(3.9) to

find the position of these points, ~ar and ~br, relative to the chief. It can be shown that

the direction of ~ar is a function of qr and φ, while ar is a function of zmax, φ, and

a linear relationship with ae. The same dependence holds for ~br and br. Figure 3.2

gives a physical representation of the semi-major and semi-minor axis of the elliptical

trajectory.

3.4 Relative Eccentricity

The relative eccentricity may now be defined as

er =

√
1− b2

r

a2
r

(3.26)

in which the ratio br/ar is only a function of qr and φ as plotted in Figures 3.3 and

3.4.

For 0˚< φ <360˚, there are only two cases in which the relative eccentricity,

er, equals zero. They occur at φ = π/2, as appears in Figure 3.3, and φ = 3 · π /2.

This is consistent with Lovell’s circular formation [14]. It is important to note from

Figure 3.4 that for a given φ, there exists a minimal achievable relative eccentricity.

3.4.1 Example. For example, if a 2x1 elliptical formation is desired, simply

set ar/br = 2, where ar and br are computed by evaluating Eq.(3.19) at the appro-
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Figure 3.2 Physical Representation of ar and br

priate β∗ given by Eq.(3.25). This particular case is chosen because the resulting

simplification is comparatively uncomplicated.

ae =
4 · zmax√

−15 + 75 · sin(φ)2
(3.27)

Therefore, for a given value of zmax, only one value of ae provides the desired eccen-

tricity. Furthermore, not all values of φ are possible. The results are imaginary for

φ between 0 and sin−1(1/
√

5), and the relative quotient as a function of φ appears

as

qr =

√
−15 + 75 · sin(φ)2

4
(3.28)

For this case, the minimum φ may be defined as

φmin = sin−1(
1√
5
) ≈ 26.565o (3.29)
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Figure 3.3 Eccentricity Versus qr and φ in 3-D Space

and the maximum φ may be defined as

φmax = 2 · π − sin−1(
1√
5
) ≈ 333.435o (3.30)

The minimum and maximum φ are apparent in the contour plot of Figure 3.5. Notice

that a 2x1 elliptical formation not only occurs in-plane, as shown by Sabol [20], but

can also occur in a variety of out-of-plane formations.

3.5 Relative Quotient

The relationship between zmax and ae was defined as the relative quotient in

Eq.(3.24). The validity of this linear relationship may be shown by a typical plot of

eccentricity versus ae and zmax for a constant φ as seen in Figure 3.6 or more clearly

visible in its contour plot, Figure 3.7.
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3.6 Formation Angles

3.6.1 Parametric to Physical. As previously alluded to, β and φ are para-

metric angles, not physical angles. A method similar to finding the true anomaly

from the eccentric anomaly for a Keplerian orbit is used to find the relationship be-

tween the physical and parametric angles. Although, here both angles are measured

from the center of the ellipse as seen in Figure 3.8. The deputy’s elliptical path in

the orbital plane is denoted below by the subscript “e”.

4 · x2
e + y2

e = a2
e (3.31)

Conversely, the subscript “a” denotes an auxiliary (circumscribed) circle with a

radius of ae.

x2
a + y2

a = a2
e (3.32)
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2

The physical β̃ is related to an actual point on the formation by

ye

−xe

= tan(β̃) (3.33)

whereas the parametric angle β is related to a point on the auxiliary circle by

ya

−xa

= tan(β) (3.34)

The projection onto the auxiliary circle (see Figure 3.8) dictates that ya = ye.

Eqs.(3.33) and (3.34) are equated by solving each for y. The result is

−xe · tan(β̃) = −xa · tan(β) (3.35)

Therefore, the relationship between parametric β and physical β̃ is

tan(β̃) =
xa

xe

· tan(β) (3.36)
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Eqs.(3.31) and (3.32) are equated by solving each for y2. The result is

a2
e − 4 · x2

e = a2
e − x2

a (3.37)

Manipulating Eq.(3.37) leads to
xa

xe

= 2 (3.38)

Therefore, the relationship of parametric β and physical β̃ is expressed as

tan(β̃) = 2 · tan(β) (3.39)

Similar analysis is used to determine the same relationship between parametric φ

and physical φ̃.

tan(φ̃) = 2 · tan(φ) (3.40)
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In addition, it is worth noting that differentiating Eq.(3.39) yields the in-plane an-

gular velocity.

˙̃β =
2 · ω

3 · sin(β)2 + 1
(3.41)

3.6.2 Out-of-Plane Position. When β = φ, the relative position simplifies

to

~Ωr =




−ae

2
· cos(φ)

ae · sin(φ) + yd

0


 (3.42)

The vector ~Ωr is referred to as the relative line of nodes because it represents the point

where the satellite ascends through the reference orbital plane. From Eqs.(3.7)-(3.9)
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Figure 3.8 Physical Representation of β, β̃, φ and φ̃

the relative position vector is expressed as

~rr =




−ae

2
· cos(β)

ae · sin(β) + yd

zmax · sin(β − φ)


 (3.43)

Therefore,

~Ωr • ~rr = |Ωr| · |rr| · cos(υ̃r) (3.44)

where υ̃r is the angle from the relative line of nodes to the position of the deputy in

the relative plane, thereby termed relative argument of latitude. This angle seen in

Figure 3.9 is

υ̃r = cos−1

(
(cos(β)·cos(φ)+4·sin(φ)·sin(β))

qr·
√

1+3·sin(φ)2·√κ

)
(3.45)
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where

κ = q2
r + 4 · sin(φ)2 − 8 · sin(φ) · cos(β) · cos(φ) · sin(β) +

(
q2
r · 3− 8 · sin(φ)2 + 4

) · sin(β)2 (3.46)

Figures 3.10 and 3.11 show a typical F3OS formation.
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Figure 3.10 First-Order Force-Free Stationary Formations: In-Plane View
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Figure 3.11 First-Order Force-Free Stationary Formations: 3-D View
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IV. Mission Design

4.1 Preliminary Mission Design

4.1.1 Mission Requirements. The analysis begins by specifying a mission.

An instantaneous time of observation, a ground target site, and the chief’s orbital

period specify the mission. The time of observation is defined by a GMST angle.

The target site is specified by a latitude and longitude. Using the period

P = 2 · π ·
√

a3

µ
(4.1)

where µ is Kepler’s constant, the radius of the chief is determined. It is worth noting

that the period of the deputy satellites’ (relative) motion equals the period of the

chief’s (absolute) orbital motion as given by Eq.(4.1).

4.1.2 Satellite Requirements. The purpose of the satellite requirements

is to establish the chief’s orbit. This is a basic point mass mission design problem

covered in Wertz [27], but it is covered here to express the operational limitation and

provide inputs for a numerical example. Assuming the chief is in a circular orbit, the

chief’s semi-major axis, ac, coupled with the target site and look vector (specified by

radar requirements) define the chief’s instantaneous position vector. An established

position vector limits the orbital plane. In particular, the inclination, ic, is limited

by the chief’s latitude, Lc, similar to a launch-window problem. The inclination

cannot be less than Lc for prograde orbits nor greater than 180˚-Lc for retrograde

orbits. The latitude of the chief, i.e., the angle the position vector makes with the

equatorial plane, is given by

Lc = π
2
− cos−1

(
~rc • K̂

ac

)
(4.2)
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Therefore, the inclination may only exist between π
2
− cos−1

(
~rc • K̂/ac

)
and π

2
+

cos−1
(
~rc • K̂/ac

)
. Once the inclination is chosen, the right ascension of the ascend-

ing node, Ωc, is limited to two possible values by solving




sin(Ωc) · sin(ic)

− cos(Ωc) · sin(ic)

cos(ic)


 • ~rc = 0 (4.3)

The argument of latitude, uc, may then be solved using

sin(uc) =
~rc • K̂

ac · sin(ic)
(4.4)

Eqs.(4.1)-(4.4) yield ac, ic, Ωc, and uc which are the only orbital elements needed to

completely define the circular reference orbit.

An alternative is to first establish the orbital reference plane by selecting the

inclination and right ascension of the ascending node, and then calculate the reference

satellite’s period.

4.1.3 Radar Requirements. Radar requirements include defining a look

vector (chosen by an az and el), an imaging plane (chosen to be UV), and u-v

points. With the target site and reference orbit specified, the main requirement

driving the formation design is the spatial distribution of the satellites in the image

plane, i.e., u-v points. The aim in selecting this particular input requirement is

to provide a usable means of achieving a desired remote sensing performance (e.g.

baseline distances for interferometry or moving target indication).

4.2 Perpendicular Constraint

In addition to specifying satellite location in the u-v plane, the first design ap-

proach will also require that the relative formation plane is perpendicular to the look
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vector, L̂. This eliminates the possibility of radar shadowing and may have addi-

tional benefits concerning the processing of the remote sensing data. This problem is

a subset of the overall problem and is expressed as the perpendicular constraint. For

multi-satellite arrays with the perpendicular constraint enforced, the satellites orbit

in the same plane with respect to the chief but each loiters in a different stationary

formation.

The angle between the unit normal of the formation plane and the unit look

vector is given by

θerror = cos−1(L̂ • n̂r) (4.5)

According to Eq.(3.16), n̂r is a function of variables ae, zmax, and φ, whereas L̂ is

a function of inputs azimuth, elevation, latitude, GMST, longitude, semi-major axis

of the chief, chief’s inclination, chief’s right ascension, and the chief’s argument of

latitude. For simplicity, we will only examine cases in which yd = 0, that is, when

the formation rotates about the chief. The perpendicular error can be expressed as

cos (θerror) =
2 · sin(φ) · Lr + cos(φ) · Ls + −1

qr
· Lw√

4 · sin(φ)2 + cos(φ)2 + 1
qr

2 ·
√

L2
r + L2

s + L2
w

(4.6)

where the constants Lr, Ls, and Lw are the RSW components of the look vector.

Therefore, if θerror equals 0 or π, the formation is parallel to the imaging plane.

Furthermore, the formation plane coincides with the imaging plane due to the as-

sumption of yd = 0, thereby avoiding a projection transformation. The perpendicular

constraint is actually a constraint on two variables, qr and φ. Taking Eq.(4.6) and

squaring both sides, multiplying through by q2
r , and then subtracting the left side

from both sides, we are able to put Eq.(4.6) into the form of

A · qr
2 + B · qr = C (4.7)

4-3



where

A =
(
4 · L2

s + 3L2
w − L2

r

) · cos(φ) + 4 · Lr · Ls · sin(φ) · cos(φ)− 4 · L2
s − 4 · L2

w

B = −4 · Lr · Lw · sin(φ)− 2 · Ls · Lw · cos(φ) (4.8)

C = L2
r + L2

s

For qr to be real, the quantity B2 + 4 · A · C must be positive. By simplifying

B2 + 4 · A · C, we are able to obtain

[−16 · L2
s(L

2
r + L2

s + L2
w)

] ·
[((

Lr

2 · Ls

)2

− 1

)
cos(φ)2 +

(
Lr

Ls

)
· sin(φ) · cos(φ) + 1

]

(4.9)

This is a sinusoidal function with the maximum value always occurring at zero.

Therefore, only one value of φ exists in order for qr to be real. The value occurs

when φ equals the phase shift, or in other words when B2 + 4 · A · C = 0.

((
Lr

2 · Ls

)2

− 1

)
cos(φ)2 +

(
Lr

Ls

)
· sin(φ) · cos(φ) + 1 = 0 (4.10)

Through the use of Eq.(A.10) in Appendix (A),

(
Lr

2 · Ls

)2

· (1− sin(φ)2
)

+

(
Lr

Ls

)
· sin(φ) · cos(φ) + sin(φ)2 = 0 (4.11)

The left of Eq.(4.11) is a perfect square and may be reduced to

(
Lr

2 · Ls

· cos(φ) + sin(φ)

)2

= 0 (4.12)

in other words

φ = tan−1

(
Lr

2 · Ls

)
(4.13)
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Substituting this expression into Eq.(4.7) and solving for qr using the quadratic

formula, leads to

qr =

√
1
4
· (Lr)

2 + (Ls)
2

Lw

(4.14)

Therefore, the perpendicular constraint is enforced with Eqs.(4.13) and (4.14). If the

perpendicular constraint is enforced, then qr and φ are constants, and the relative

eccentricity is determined.

Given a desired (ui, vi) point, the procedure that follows solves for ae, zmax,

and βo utilizing the perpendicular constraint. The point (ui, vi) is interposed into

GLP components and then rotated and translated into the RSW frame.




xi

yi

zi

Ξ




= RSW RIJK · IJKRSEZ · SEZRGLP ·




ui

0

vi

Ξ




(4.15)

Since the origin of the GLP frame is on the chief, only rotations are necessary.

The in-plane components of the rotated and translated GLP points, xi and yi, are

evaluated by examining their quadrant. Eqs.(3.4), (3.33), (3.39) and (4.15) are used

to determine βo. This would simply be

βo = tan−1

( −yi

2 · xi

)
− ω · t (4.16)

The ellipse, Eq.(3.12), must be projected in the chief’s orbital plane. Therefore ae is

found using the in-plane components of the rotated and translated GLP points by

ae =
√

4 · x2
i + y2

i (4.17)
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Eqs.(3.24), (4.14), and (4.17) lead to

zmax =

√
(4 · x2

i + y2
i ) ·

(
1
4
· L2

r + L2
s

)

Lw

(4.18)

Eqs.(4.13), (4.16), (4.17), and (4.18) represent a formation perpendicular to the line

of sight whose deputy is seen as (ui,vi) at the time of observation.

4.3 Co-formation Constraint

It may be desirable to have all of the satellites in the same stationary formation.

When the chief satellite possesses a repeating ground track and all of the satellites

are confined in the same formation, the formation will reoccur with the same spa-

tial distribution over the same ground target. For deputy satellites to exist in the

same formation, each deputy must have ae, yd, zmax, and φ in common. Enforcing

the perpendicular constraint on satellites in the same formation severely limits the

possibilities when looking for three or greater points (two or more deputies) on the

imaging plane. To allow for more options, the perpendicular constraint is released.

For three points on the imaging plane, an infinite number of solutions exist. The

solution here minimizes the in-plane projection, i.e., minimizing ae. A separate so-

lution that yields four points on the imaging plane where the three deputies are in

the same formation is an extension of the three point solution. Unfortunately, the

solution requires a numerical solver. The three and four point methods make an-

other subset of the overall problem and are termed as the co-formation constrained

problem.

4.3.1 Three Point Array (Minimizing ae). In this section, six equations

are developed, three for each of the two u-v points, where each u-v point represents

a unique deputy, and the deputy satellites exist in the same formation. The solution

to the six equations leads to a formation description whose ae is minimal. The first

equation constrains both deputy satellites to the same in-plane projected 2x1 ellipse.
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The second equation constrains the ith deputy satellites to a line of sight that passes

through a given (ui, vi) point. The third equation equates the slope of the in-plane

projected line of sight to the slope of the in-plane projected ellipse. To begin, the

inputs (u1, v1) and (u2, v2) from the radar requirements are converted to the RSW

coordinate system,




ri

si

wi

Ξ




= RSW RIJK · IJKRSEZ · SEZRGLP ·




ui

0

vi

Ξ




(4.19)

where (ri, si, wi) represents the required projection point of the ith satellite in the

RSW frame. Note that here, contrary to the last section, the imaging plane does

not coincide with the formation plane. For the three point case, i is 1 or 2. The first

equation is the in-plane elliptical equation given by,

4 · xi
2

a2
e

+
(yi − yd)

2

a2
e

= 1 (4.20)

where (xi, yi, zi) represents the position of the ith satellite in the RSW frame. This

equation assists in constraining the satellites to a unique formation. The second

equation is a line in the RSW coordinates constraining the projection of the satellite’s

position to the given u-v point. The line of sight equation is formulated from the

target site’s position in the RSW coordinates (Tr, Ts, Tw) and the u-v projection

points in the RSW coordinates by using a two-point line equation. The equation for

the line of sight is
xi − ri

Tr − ri

=
yi − si

Ts − si

=
zi − wi

Tw − wi

(4.21)
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Eliminating the “z” term yields the projection of the line of sight in the reference

orbital plane (R-S plane) and is given by

yi − Ts =

(
ri − Tr

si − Ts

)
· (xi − Tr) (4.22)

This leads to the third equation which essentially minimizes the ae parameter through

tangent point assessment. That is, the lines of sight will intersect the elliptical

cylinder at points of tangency as shown in Figure 4.1. The slope for a point along

the projected ellipse, Eq.(4.20), is determined by implicit differentiation

∂yi

∂xi

=
4 · xi

yd − yi

(4.23)

and equated to the slope of the projected line of sight giving the third equation.

4 · xi

yd − yi

=
ri − Tr

si − Ts

(4.24)

With i = 1 and i = 2, Eqs.(4.20), (4.22), and (4.24) make six equations with

six unknowns which are x1, y1, x2, y2, yd, and ae. The six unknowns are solved

for analytically. The parameter which depicts the position of the satellite in the

projected ellipse, βo, is solved for each satellite using Eq.(4.16). The out-of-plane

position in the RSW coordinates for the ith satellite, zi, is solved by substituting xi

and yi into Eq.(4.21). Having the position of both satellites, (x1, y1, z1) and (x2, y2,

z2), the formation plane is defined as

Ca · x + Cb · y + Cc · z + Cd = 0 (4.25)
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Figure 4.1 Two Tangent Site Vectors

where Ca, Cb, Cc, and Cd are found with the solved points (x1, y1, z1), (x2, y2, z2)

and (0, yd, 0).

Ca = y1 · z2 − z1 · y2 − yd · z2 + yd · z1

Cb = x2 · z1 − x1 · z2

Cc = (x2 − x1) · yd + x1 · y2 − x2 · y1

Cd = (x1 · z2 − x2 · z1) · yd

(4.26)

The point (0, yd, 0) is the point which the formation rotates about, termed the

pseudo-chief, which for F3OS formations is a point offset of the chief in the velocity

direction. The intersection of this plane and the cylinder created by Eq.(4.20) provide

zmax and φ.

φ = tan−1

(
Ca

2 · Cb

)
(4.27)

zmax =
ae

Cc

·
√

C2
a

4
+ C2

b (4.28)

Through examination, the normal of the plane is Ca · R̂ + Cb · Ŝ + Cc · Ŵ , which

demonstrates that Eqs.(4.27) and (4.28) have the same form as Eqs.(4.13) and (4.14)

of the perpendicular constraint.
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Figure 4.2 Three Line of Sight Vectors

4.3.2 Four Point Array. This section extends the problem to four points,

i.e., three deputies. The initial calculations are similar to the initial equations of

the three point solution with the exception of having a third deputy. The line of

sight vectors are calculated from Eq.(4.21) (see Figure 4.2). Eq.(4.20) represents

the projected formation but may be thought of as a cylinder in three-dimensional

space. The intersection of each line in Eq.(4.21) and the elliptical cylinder, Eq.(4.20),

has the solution of a single point in space, two points in space, or no solution (see

Figure 4.3). Each intersection point (discriminated by k) is a function of the semi-

major axis of the elliptical cylinder, ae, and the center of the elliptical cylinder

determined by yd. Each intersection point represents a potential deputy position

with the restraint that the intersection(s) of the first line represent the position

of the first deputy,
(
xk

1, y
k
1 , z

k
1

)
, the intersection(s) of the second line represent the

position of the second deputy,
(
xk

2, y
k
2 , z

k
2

)
, and the intersection(s) of the third line

represent the position of the third deputy,
(
xk

3, y
k
3 , z

k
3

)
. One intersection from each

line, for a total of three intersection points, leads to one set of solutions. Since

there is a possibility of having two intersection points (k = 1 and k = 2) per line,

there are eight potential sets of solutions. For each set of three intersection points

to be a viable solution, the intersection points and the pseudo-chief must lie in the

same plane, the relative formation plane. To determine if the three points lie in the
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Figure 4.3 Line of Sight Vectors Intersecting a Projection Cylinder

same plane as the pseudo-chief, vectors are created beginning at the pseudo-chief

and extending to each intersection point (see Figure 4.4). The three vectors created

may be thought of as three edge vectors used to determine a parallelepiped. The

volume of a parallelepiped is the absolute value of the scalar triple product of the

three edge vectors. If the edge vectors of the parallelepiped lie in the same plane,

then the volume is zero, resulting in a value of zero for the scalar triple product.

Therefore, the three intersection points and the pseudo-chief lie in the same plane if

they satisfy




xk
1

yk
1 − yd

zk
1


 •







xk
2

yk
2 − yd

zk
2


×




xk
3

yk
3 − yd

zk
3





 = 0 (4.29)

This provides multiple ae and yd combinations for each set of three intersection

points. With the intersection point
(
xk

i , y
k
i , z

k
i

)
representing the position of the ith

satellite and knowing that all of the satellites lie in the same plane, βo is solved for

by substituting the appropriate xi and yi into Eq.(4.16) which requires a quadrant

4-11



R

S

W

Parallelepiped

Intersection Vector

Figure 4.4 Parallelepiped and Intersection Vectors

check. Using any two of the three intersection points, φ is determined from Eq.(4.27)

where once again a quadrant check is necessary, and zmax is obtained from Eq.(4.28).

4.4 Numerical Examples

4.4.1 Perpendicular. We are interested in viewing Damascus, Syria at a

latitude of 35˚North and longitude of 38˚East. Due to restriction of the target

site, the ideal azimuth and elevation are given as 20˚and 50˚respectively. The

reference satellite has a radius of 7000 km, and this puts the range at nearly 787.84

km. A favorable look vector may be achieved by the reference satellite being in an

inclination of 87˚with a right ascension of 37.4˚ and having an argument of latitude

of 38.95˚. Figure 4.5 illustrates the reference orbit, target site, and look vector.

Specifying u-v points of (-100,300) meters and (100,100) meters, the perpen-

dicular constraint equation yields φ = 35.924˚ and qr = 3.979. This places the first

deputy in a formation of ae = 405.6 meters and zmax = 1614.1 meters at βo = 66.5˚.

The second deputy satellite is in a formation with ae = 158.7 meters and zmax=631.5
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Figure 4.5 Perpendicular Constraint Example: Representation of The Reference
Orbit, Target Site, and Look Vector

meters and located at βo=74.7˚. Figures 4.6 and 4.7 illustrate the formation in the

RSW and UV coordinate frames respectively.
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Figure 4.6 Perpendicular Constraint Example: Formation Plot with Satellites in
RSW

4-13



−1.5 −1 −0.5 0 0.5 1 1.5

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

u−axis (km)

v−
ax

is
 (

km
)

Figure 4.7 Perpendicular Constraint Example: Formation Plot with Satellites in
UV

4.4.2 Minimizing ae. We are interested in viewing Kabul, Afghanistan at

a latitude of 34˚North and longitude of 69˚East. Due to restriction of the target

site, the ideal azimuth and elevation are given as 170˚and 4˚respectively. The

reference satellite has a radius of 7000 km, and this puts the range at nearly 2473.5

km. A favorable look vector may be achieved by the reference satellite being in

an inclination of 20˚with a right ascension of 30.87˚ and having an argument of

latitude of 43.51˚. Figure (4.8) shows the reference orbit with respect to the look

vector and target site.

Figure 4.8 Minimum ae Example: Representation of The Reference Orbit, Target
Site, and Look Vector
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Specifying symmetric u-v points of (150,150) meters and (-150,-150) meters,

the co-formation (minimizing ae) yields an ae of 109.1 meters, a zmax of 951.6 meters,

and yd is nearly zero. The φ parameter is equal to 120.84˚. The deputies have a βo

of 88.29˚ and 271.7˚. Figures 4.9 and 4.10 demonstrates the resulting formation in

the RSW and UV coordinate frame.
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Figure 4.9 Minimum ae Example: Formation Plot with Satellites in RSW
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Figure 4.10 Minimum ae Example: Formation Plot with Satellites in UV

4.4.3 Three Deputy Array. The United States has a particular interest in

looking at Tbilisi, the capital city of the Republic of Georgia, at noon UTC on the 7th

of July 2005. Tbilisi is located at 45˚N latitude and 40˚E longitude. The current
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space asset’s reference satellite orbits in the equatorial plane and has a period of 1

hour and 37 minutes. It will be directly South of the city and 2˚ off of the horizon

at the time of interest. The question is what configuration, i.e., formation parameter

must it be in to have a 30 meter equilateral spatial distribution of (0,17.32), (-15,-

8.66), and (15,-8.66). Figure 4.11 shows all of the possibilities for ae between 15

meters and 50 meters. The ae chosen is 50 meters, letting yd be 4.92 meters ahead
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Figure 4.11 Three Deputy Example: Possible ae, yd Values

or behind the chief in the velocity direction. Figure 4.12 is a plot of the deputies

in the RSW frame, and Figure 4.13 reveals the UV plot when yd is a positive 4.92

meters.
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Figure 4.12 Three Deputy Example: Formation Plot with Satellites in RSW
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Figure 4.13 Three Deputy Example: Formation Plot with Satellites in UV
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V. Conclusions and Recommendations

5.1 Conclusions

The algorithms developed in this work correlate the instantaneous geometric

requirements of remote sensing to the dynamics of force-free first-order stationary

satellite formations. Given a set of requirements, the algorithms constitute a rela-

tively quick systematic way to calculate formation conditions that yield a feasible

satellite distribution in an imaging plane relative to a chosen target site on the

ground. Furthermore, these algorithms assist to bridge the gap that divides remote

sensing requirements and satellite orbital parameters.

5.2 Recommendations

The ideas presented are readily expandable to optimization routines or feasi-

bility studies that evaluate multiple target sites, assess reconfiguration maneuvers,

utilize perpendicular formation error, employ drifting formations, or even examine

continuous observation times.

As alluded to above, there are several possible areas of further exploration.

They include expanding the u-v distribution correlations to include drifting forma-

tions or validating the algorithms through an external source such as STK, Satellite

Tool Kit. Although the limitations of Hill’s equations are known, the limitations of

the equations and algorithms derived here could be further explored and quantified.

Although it has not been explicitly stated, the author has performed time duration

analysis to specify the u-v points over a period of time. This area has great potential

for future research. Another idea that has potential and was briefly examined incor-

porates a minimization routine with spacial distributions at multiple target sites to

reduce reconfiguration costs.

The use of multiple apertures in space for remote sensing purposes is a topic of

great military interest. The topic is highly interdisciplinary, requiring expertise from

5-1



several different technical fields. It is hoped that this work will provide the initial

tools necessary for researchers in these fields to begin communicating in a way that

will lead to innovative solutions to the problems associated with this topic.
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Appendix A. Trigonometric Relations

cos (θ) = cos (−θ) = sin
(π

2
− θ

)
(A.1)

sin (θ) = − sin (−θ) = cos
(π

2
− θ

)
(A.2)

tan (θ) = − tan (−θ) = cot
(π

2
− θ

)
(A.3)

sin 2 · θ = 2 · cos θ sin θ (A.4)

cos 2 · θ = cos2 θ − sin2 θ = 2 · cos2 θ − 1 = 1− 2 sin2 θ (A.5)

tan 2 · θ = 2 · tan θ/
(
1− tan2 θ

)
(A.6)

sin
θ

2
= ±

√
(1− cos θ)

2
(A.7)

cos
θ

2
= ±

√
(1 + cos θ)

2
(A.8)

tan
θ

2
=

sin θ

(1 + cos θ)
(A.9)

cos2 θ + sin2 θ = 1 (A.10)

sec2 θ − tan2 θ = 1 (A.11)

cos ec2θ − cot2 θ = 1 (A.12)

sin2 θ =
1

2
(1− cos 2 · θ) (A.13)

cos2 θ =
1

2
(1 + cos 2 · θ) (A.14)

tan2 θ =
(1− cos 2 · θ)
(1 + cos 2 · θ) (A.15)
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sin (A + B) = sin A cos B + cos A sin B (A.16)

sin (A−B) = sin A cos B − cos A sin B (A.17)

cos (A + B) = cos A cos B − sin A sin B (A.18)

cos (A−B) = cos A cos B + sin A sin B (A.19)

tan (A + B) =
(tan A + tan B)

(1− tan A tan B)
(A.20)

tan (A−B) =
(tan A− tan B)

(1 + tan A tan B)
(A.21)

sin A + sin B = 2 · sin 1

2
(A + B) cos

1

2
(A−B) (A.22)

sin A− sin B = 2 · cos
1

2
(A + B) sin

1

2
(A−B) (A.23)

cos A + cos B = 2 · cos
1

2
(A + B) cos

1

2
(A−B) (A.24)

cos A− cos B = −2 · sin 1

2
(A + B) sin

1

2
(A−B) (A.25)

tan A + tan B = sin
(A + B)

(cos A cos B)
(A.26)

tan A− tan B = sin
(A−B)

(cos A cos B)
(A.27)

sin2 A + sin2 B = 1− cos (A + B) cos (A−B) (A.28)

sin2 A− sin2 B = sin (A + B) sin (A−B) (A.29)

cos2 A + sin2 B = 1− sin (A + B) sin (A−B) (A.30)

cos2 A− sin2 B = cos (A + B) cos (A−B) (A.31)

cos2 A + cos2 B = 1 + cos (A + B) cos (A−B) (A.32)

cos2 A− cos2 B = − sin (A + B) sin (A−B) (A.33)
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Appendix B. MatLab r© One Axis Rotation Code

The following MatLab r© m-file is used to create a rotation matrix that rotates the

one axis through “degrees”.

%Axis One Rotation Matrix

function M = ROT1(degrees);

M = [1 0 0 0;

0 cos(degrees) sin(degrees) 0;

0 -sin(degrees) cos(degrees) 0;

0 0 0 1];

%Matthew Press, 2003
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Appendix C. MatLab r© Two Axis Rotation Code

The following MatLab r© m-file is used to create a rotation matrix that rotates the

two axis through “degrees”.

%Axis Two Rotation Matrix

function M = ROT2(degrees);

M = [cos(degrees) 0 -sin(degrees) 0;

0 1 0 0;

sin(degrees) 0 cos(degrees) 0;

0 0 0 1];

%Matthew Press, 2003
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Appendix D. MatLab r© Three Axis Rotation Code

The following MatLab r© m-file is used to create a rotation matrix that rotates the

three axis through “degrees”.

%Axis Three Rotation Matrix

function M = ROT3(degrees);

M = [cos(degrees) sin(degrees) 0 0;

-sin(degrees) cos(degrees) 0 0;

0 0 1 0;

0 0 0 1];

%Matthew Press, 2003
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Appendix E. MatLab r© GLP to SEZ

The following MatLab r© m-file is used to rotate GLP coordinates to SEZ coordi-

nates.

% GLP to SEZ

function [S,E,Z]= GLP2SEZ(G,L,P,az,el,rho);

for k = 1:max(size(G));

SEZ = ROT3(az-pi/2)*ROT1(-el)*...

[1 0 0 0;0 1 0 rho;0 0 1 0;0 0 0 1]*[G(k);L(k);P(k);1];

S(k) = SEZ(1);

E(k) = SEZ(2);

Z(k) = SEZ(3);

end

%Matthew Press, 2003
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Appendix F. MatLab r© SEZ to IJK

The following MatLab r© m-file is used to rotate SEZ coordinates to IJK coordinates.

%SEZ to IJK

function [I,J,K] = SEZ2IJK(S,E,Z,L,l,re);

for k = 1:max(size(S));

IJK = ROT3(-l)*ROT2(L-(pi/2))*...

[1 0 0 0;0 1 0 0;0 0 1 re;0 0 0 1]*[S(k);E(k);Z(k);1];

I(k) = IJK(1);

J(k) = IJK(2);

K(k) = IJK(3);

end

%Matthew Press, 2003
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Appendix G. MatLab r© IJK to RSW

The following MatLab r© m-file is used to rotate IJK coordinates to RSW coordi-

nates.

% IJK to RSW

function [R,S,W] = IJK2RSW(I,J,K,a,In,Om,u);

for k = 1:max(size(I));

RSW = [1 0 0 -a;0 1 0 0;0 0 1 0;0 0 0 1]*...

ROT3(u)*ROT1(In)*ROT3(Om)*[I(k);J(k);K(k);1];

R(k) = RSW(1);

S(k) = RSW(2);

W(k) = RSW(3);

end

%Matthew Press, 2003
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Appendix H. MatLab r© RSW to IJK

The following MatLab r© m-file is used to rotate RSW coordinates to IJK coordi-

nates.

%RSW to IJK

function [I,J,K] = RSW2IJK(R,S,W,a,In,Om,u);

for k = 1:max(size(R));

IJK = ROT3(-Om)*ROT1(-In)*ROT3(-u)*...

[1 0 0 a;0 1 0 0;0 0 1 0;0 0 0 1]*[R(k);S(k);W(k);1];

I(k) = IJK(1);

J(k) = IJK(2);

K(k) = IJK(3);

end

%Matthew Press, 2003
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Appendix I. MatLab r© IJK to SEZ

The following MatLab r© m-file is used to rotate IJK coordinates to SEZ coordinates.

%IJK to SEZ

function [S,E,Z] = IJK2SEZ(I,J,K,L,l,re);

for k = 1:max(size(I));

SEZ = [1 0 0 0;0 1 0 0;0 0 1 -re;0 0 0 1]*...

ROT2(-L+(pi/2))*ROT3(l)*[I(k);J(k);K(k);1];

S(k) = SEZ(1);

E(k) = SEZ(2);

Z(k) = SEZ(3);

end

%Matthew Press, 2003
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Appendix J. MatLab r© SEZ to GLP

The following MatLab r© m-file is used to rotate SEZ coordinates to GLP coordi-

nates.

%SEZ to GLP

function [G,L,P]= SEZ2GLP(S,E,Z,az,el,rho);

for k = 1:max(size(S));

GLP = [1 0 0 0;0 1 0 -rho;0 0 1 0;0 0 0 1]*...

ROT1(el)*ROT3(-az+pi/2)*[S(k);E(k);Z(k);1];

G(k) = GLP(1);

L(k) = GLP(2);

P(k) = GLP(3);

end

%Matthew Press, 2003
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Appendix K. MatLab r© GLP to UV

The following MatLab r© m-file is used to rotate GLP coordinates to UV coordinates.

%GLP to UV

function [U,V]= GLP2UV(G,L,P,rho);

for k = 1:max(size(G));

U(k) = (rho/(L(k)+rho))*G(k);

V(k) = (rho/(L(k)+rho))*P(k);

end

%Matthew Press, 2003
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